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HumanEva I Dataset 

PROBLEM:   
Retrieval of  a 2D and 3D Human Pose from a single image 

STATE- OF-THE ART LIMITATIONS:   
�„ Use of  temporal information or  background subtraction 

�„ Unrealistic assumption of  good 2D input 

CONTRIBUTIONS:  
�„ Novel probabilistic generative model for 3D Human Motion  

�„ Bayesian framework for joint inference of  2D and 3D pose 

Problem Definition   

GIVEN:  
�„ Input Image  
�„ Camera Focal Length �. 
 
WE  WANT TO RETRIEVE:  
�„ Both the 3D and 3D pose of  the 

subject in  the input image 

Bayesian Formulation  
�„ Image evidence given body configuration 

 

 

�„ Consider 2D to  be projection of  true 3D model generated by  
smaller latent model 
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Image Evidence 

2D Pose 

3D Pose 

Latent Space 

 

�„ Smooth response good for inference 

�„ Scale estimated from depth with �Ã: 

Discriminative 2D Part Detectors [ 29 ] 

Detector at scale 
space coordinates 

Relative weighting 

Latent Generative Model  
�„ Learns compression function: 

 

 

�„ 3D Poses are discretized 

�„ Directed Acyclic Graph allows 
efficient dynamic programming: 

3D Poses 
Latent 
Space 

Parameter Learning (k i , �Ã)  
�„ Parameters serve to  combine detectors with latent model 

�„ Human symmetry exploited to  reduce needed parameters 

�„ Optimized on randomly generated negatives 

Inference 
 
 

�„ 3D Pose consists of  global transformation and local deformation 

�„ Treated as global optimization problem (using CMA- ES [ 10 ]) : 
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S2  Jogging 
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�„ Weighted based on usefulness for 
3D pose estimation 

�„ Score interpreted as log-likelihood 

Generative  model reduces 
search space during inference 

 

Discriminative  2D detectors 
enforce consistency of  the 3D 
pose with the image evidence 

 

Compression Function: 

Decompression Function: 

k i values 
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